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Abstract
Purpose  To evaluate the image quality of pediatric portable chest radiographs processed using a deep learning–based noise 
reduction (NR) algorithm implemented in clinical radiography systems, which is designed to reduce image noise without 
altering radiation dose, both alone and with edge enhancement.
Materials and methods  This retrospective visual grading analysis included 101 pediatric patients (median age: 33 days; 
median weight: 2844 g) who underwent portable chest radiography. Each image was processed using four techniques: (1) 
standard (no processing), (2) edge enhancement only, (3) NR only, and (4) NR with edge enhancement. Image quality was 
assessed using five criteria: visualization of proximal bronchi, small peripheral airways, vertebrae, image noise, and overall 
image quality. In an anonymous, randomized review, two pediatric radiologists rated each criterion using a 5-point Likert 
scale. Statistical comparisons were conducted between processing methods.
Results  Images processed with NR and edge enhancement (NR + /Filter +) achieved the highest mean scores across all 
criteria. Structural visibility—particularly of small peripheral airways, proximal bronchi, and vertebrae—showed significant 
improvement with edge enhancement (p < 0.0001). No significant difference in image noise was observed between NR-only 
and NR + /Filter + groups (p = 0.482).
Conclusion  AI-based noise reduction significantly improves image quality by reducing noise. Although edge enhancement 
does not further suppress noise, it improves the visibility of delicate anatomical structures. This combined approach may 
enhance diagnostic confidence in neonatal chest radiography, particularly under low-dose conditions.
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Introduction

Minimizing radiation exposure is critical in pediatric 
imaging,  par t icularly in por table radiography. 
Consequently, low-dose imaging protocols are widely 
adopted in clinical practice. However, reduced radiation 
doses inherently increase image noise, which can obscure 
anatomical structures and compromise diagnostic 
accuracy.

Recent advances have seen the integration of artificial 
intelligence (AI)-based noise reduction techniques across 
various imaging modalities, aiming to enhance image quality 
while maintaining or even reducing radiation dose levels [1, 
2]. One commercially available technique involves AI-based 
noise reduction algorithms integrated into radiographic sys-
tems, enabling effective noise suppression while retaining 
anatomical detail and image texture [3].

Traditionally, edge enhancement filters have also been 
used in radiography to improve the visibility of anatomical 
structures and pathological findings [4]. Given these paral-
lel developments, this study aimed to evaluate the visual 
image quality of pediatric portable chest X-rays processed 
with NR alone and with edge enhancement. The goal was 
to determine the relative diagnostic utility of each process-
ing approach.

Objective

The objective of this study was to evaluate the visual image 
quality of pediatric portable chest radiographs processed 
with a commercially implemented AI-based noise reduc-
tion technology and to assess the additional diagnostic value 
of edge enhancement applied after noise reduction. Specifi-
cally, we aimed to determine how each image processing 
method influenced the visibility of anatomical structures and 
the overall clarity of images obtained under dose settings 
commonly used in routine clinical pediatric imaging.

Materials and methods

Study design

This study is a visual image quality assessment of pediatric 
portable X-ray images processed with an AI-based 
noise reduction technique commercially implemented 
in radiographic systems. To evaluate the impact of this 
noise reduction method and the additional effect of edge 

enhancement on image quality, we compared four types of 
image processing approaches on portable X-ray images.

Digital X‑ray equipment

1.	 Mobile X-ray system: Sirius Star mobile tiara (FUJI-
FILM Corporation)

2.	 Wireless flat panel detector: Digital Radiography CXDI- 
Series (Canon Inc.)

3.	 Imaging control software: CXDI Control Software NE 
ver. 3 (Canon Inc.) Noise Reduction: Intelligent NR 
(INR)

4.	 Edge enhancement: Edge enhancement was performed 
using the built-in filter function of the PACS system 
(PSP Corporation), which is routinely used in our clini-
cal practice.

5.	 Diagnostic monitor: RadiForce RX660(EIZO Corpora-
tion)

All images underwent AI-based noise reduction dur-
ing acquisition before being uploaded to PACS. The edge 
enhancement filter was implemented at the PACS level and 
was available on all PACS terminals throughout the hospi-
tal, including NICU workstations, allowing neonatologists 
to access processed images for clinical interpretation.

Image processing techniques

Four different image processing techniques were evaluated 
for comparison (Fig. 1,2,3):

Standard portable X-ray: Baseline images are obtained 
with the Canon DR system without additional processing.
Portable X-ray with edge enhancement: Baseline images 
with an edge enhancement filter applied to improve sharp-
ness and lesion visibility.
Portable X-ray with noise reduction processing: Images 
processed using Canon’s INR software to reduce image 
noise while maintaining structural detail.
Portable X-ray with noise reduction processing and edge 
enhancement: Images processed with both INR and an 
additional edge enhancement filter to evaluate the com-
bined effect on image quality.

Participants

The study included pediatric patients, not limited to neo-
nates, for whom an AI-based noise reduction technique 
had been applied. The study population consisted of 101 
patients, with 59 males and 42 females. Ages ranged from 
0 to 2857 days (7.9-year-old), with a median age of 33 days 
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(mean 223.9 days, SD 553). Body weights ranged from 
457 g to 14,000 g, with a median weight of 2844 g (mean 
3714.9 g, SD 3515.6 g). This broader age range resulted 

Fig. 1   Portable chest radiographs of a 2-day-old preterm infant (34 + 3 weeks, 1,935 g). Four processing conditions are shown: (1) standard (no 
processing), (2) edge enhancement only, (3) noise reduction only, and (4) combined noise reduction and edge enhancement

Fig. 2   Magnified views of the lung fields from the same case shown 
in Fig.  1, under four image processing conditions: (1) standard (no 
processing), (2) edge enhancement only, (3) noise reduction only, and 
(4) combined noise reduction and edge enhancement. Compared with 
(1), image (3) demonstrates clearer depiction of pulmonary vessels 

due to noise suppression. Image (2) appears grainier when edge 
enhancement is applied without noise reduction, whereas image (4) 
highlights fine peripheral bronchial structures after noise reduction 
with additional edge enhancement

Fig. 3   Magnified views of the vertebral region from the same case 
shown in Fig. 1, under four image processing conditions: (1) standard 
(no processing), (2) edge enhancement only, (3) noise reduction 
only, and (4) combined noise reduction and edge enhancement. 

Noise reduction improves the clarity of vertebral contours, as seen in 
(3), while additional edge enhancement after noise reduction in (4) 
further accentuates the cortical margins
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from the continuous collection of pediatric cases processed 
with the AI-based technique over a specific period.

Image acquisition

Portable X-ray images of pediatric patients were obtained at 
a low radiation dose to minimize exposure, reflecting routine 
clinical practice in pediatric imaging. These images were 
processed through the four techniques outlined above, creat-
ing images for each patient under each processing condition.

The imaging parameters varied across cases: the tube 
voltage ranged from 50 to 70 kV (mean, 55.9 ± 9.2 kV), and 
the tube current–time product ranged from 0.8 to 2.0 mAs 
(mean, 1.26 ± 0.32 mAs). The source-to-image distance 
(SID) ranged from 100 to 130 cm (mean, 108.6 ± 13.6 cm). 
The entrance skin dose (ESD) had a mean of 29.8 μGy (SD, 
7.9), with values ranging from 7.8 to 62.6 μGy.

Variation in acquisition parameters and ESD was 
observed due to differences in patient size and imaging 
conditions.

Visual evaluation criteria—visual grading analysis 
(VGA)

To assess image quality, we employed a Visual Grading 
Analysis (VGA) approach, based on criteria adapted from 
the study by Smet et al. [5], which evaluated neonatal chest 
radiographs under various imaging conditions.

From their original set of criteria, we selected five items 
that were deemed most clinically relevant and feasible to 
evaluate in our study:

1. Visualization of the proximal bronchi—visibility and 
continuity of main bronchial structures.

2. Visualization of the small peripheral airways—clarity 
of fine peripheral airway markings.

3. Visualization of the vertebrae—delineating vertebral 
structures through the mediastinum.

4. Diagnostic acceptability of image noise—degree of 
image noise and its impact on anatomical assessment.

5. Overall image quality—comprehensive subjective 
assessment of diagnostic utility, including structure visibil-
ity, contrast, and artifact absence.

Each criterion was scored using a 5-point Likert scale 
commonly used in VGA:

1 = Criterion not fulfilled.
2 = Criterion probably not fulfilled.
3 = Indecisive whether the criterion is fulfilled or not.
4 = Criterion probably fulfilled.
5 = Criterion fulfilled.
All images were anonymized and randomly ordered to 

prevent observer bias. The scores from all evaluators were 
then averaged for statistical analysis.

Evaluation procedure

Each radiologist independently reviewed the images in a 
randomized order to avoid bias. Images were rated on a 
structured scale (e.g., 1–5) across each criterion, and the 
scores were averaged to assess the relative quality of each 
image type. Inter-observer agreement between the two read-
ers (A.F., 19 years of radiology experience, subspecialty in 
pediatric radiology; Y.S., 13 years, subspecialty in pediatric 
radiology) was assessed using the intraclass correlation coef-
ficient (ICC, two-way random-effects, absolute agreement).

Statistical analysis

Pairwise comparisons were performed using the Wilcoxon 
signed-rank test to determine the statistical significance of 
differences in image quality across the four image process-
ing methods. This non-parametric test was selected due to 
the ordinal nature of the data derived from 5-point Likert 
scale scores. Statistical significance was defined as a p 
value < 0.05. Pairwise comparisons were performed using 
the Wilcoxon signed-rank test. All statistical analyses were 
performed using R version 4.2.2 (R Foundation for Statisti-
cal Computing, Vienna, Austria).

Result

Inter-observer agreement between the two readers was 
excellent, with an ICC of 0.91 (95% CI 0.87–0.94). Overall 
differences among the four image processing methods were 

Table 1   Mean visual grading 
analysis (VGA) scores by image 
processing method

*Abbreviations used for the four image processing types are as follows: NR + /Filter + Images processed 
with both noise reduction and edge enhancement; NR + /Filter − Images processed with noise reduction 
only; NR −/Filter + Images processed with edge enhancement only; NR −/Filter − Standard images without 
additional processing

Region of evaluation NR −/Filter −  NR −/Filter +  NR +/Filter −  NR +/Filter + 

Small peripheral airways 3.436 3.881 3.97 4.644
Proximal bronchi 3.594 3.941 4.05 4.456
Vertebrae 3.74 3.95 4.3 4.73
Image noise 4.09 4.9 4.93 4.95
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first assessed using the Friedman test, which indicated 
statistically significant differences for all evaluation criteria 
(Peripheral Airways: χ2 = 195.99, p < 0.0001; Proximal 
Bronchi: χ2 = 148.92, p < 0.0001; Vertebrae: χ2 = 190.12, 
p < 0.0001; Image Noise: χ2 = 216.55, p < 0.0001). The 
Visual Grading Analysis (VGA) results (Table 1) showed 
that image quality improved across all evaluation criteria 
with edge enhancement and noise reduction, particularly in 
the NR +/Filter + group, where visibility of small peripheral 
airways and vertebrae markedly increased. Image noise 
scores were highest in both NR + groups.

Pairwise statistical comparisons between processing 
groups (Table 2) demonstrated that NR +/Filter + showed 
statistically significant improvements (p < 0.0001) over all 
other groups in terms of anatomical structure visibility, 
including small peripheral airways, proximal bronchi, and 
vertebrae. These results indicate that edge enhancement 
provides additional structural clarity benefits even after an 
AI-based noise reduction technique has effectively reduced 
noise.

In contrast, when comparing image noise scores, signifi-
cant differences were found between groups with and with-
out noise reduction applied (all p < 0.0001), confirming the 
effectiveness of the noise reduction technique in suppressing 
image noise. However, there was no significant difference 
between NR +/Filter − and NR +/Filter + (p = 0.482), sug-
gesting that edge enhancement does not further reduce noise 
once noise reduction has been applied.

These findings demonstrate that while the AI-based 
noise reduction technique alone achieves excellent noise 
suppression, the addition of edge enhancement improves 

the diagnostic visibility of fine anatomical details without 
compromising noise characteristics.

In additional exploratory analyses, the potential 
influence of patient age and body weight on image quality 
was evaluated. Spearman’s rank correlation showed no 
significant association between age and image quality 
(ρ = 0.08, p > 0.05). Kruskal–Wallis tests confirmed no 
significant differences among age groups, except for 
NR −/Filter + (p = 0.017). For body weight, a moderate 
positive correlation was observed with image quality scores 
(ρ = 0.37, p < 0.001).

Discussion

This study confirms that combining advanced noise reduc-
tion techniques with traditional edge enhancement can sig-
nificantly improve image quality in low-dose X-ray imaging 
for neonates. Such improvements may facilitate better diag-
nostic accuracy in a vulnerable population.

Recent advances in image processing have focused on 
denoising methods that enhance visual quality while pre-
serving image quality. Deep learning-based approaches, 
such as those combining deep image prior with image fusion 
techniques, have effectively suppressed noise and improved 
perceptual image quality [1, 2]. Our study also improved 
image quality, likely due to efficient noise reduction.

The AI-based noise reduction technique substantially 
suppressed image noise across all evaluations. The lack of 
a statistically significant difference in noise scores between 
NR +/Filter − and NR +/Filter + groups (p  = 0.482) 

Table 2   Statistical comparison 
of image quality scores: 
pairwise p values between 
processing groups. Each p 
value represents a pairwise 
comparison between image 
processing groups using the 
Wilcoxon signed-rank test. p 
Value < 0.05 was considered 
statistically significant

NR Intelligent noise reduction; Filter Edge enhancement

Region of evaluation Comparison NR −/Filter −  NR −/Filter +  NR +/Filter −  NR +/Filter + 

Small peripheral airways NR −/Filter −  – 0.025  < 0.0001  < 0.0001
NR −/Filter +  0.025 –  < 0.0001  < 0.0001
NR +/Filter −   < 0.0001  < 0.0001 –  < 0.0001
NR +/Filter +   < 0.0001  < 0.0001  < 0.0001 –

Proximal bronchi NR −/Filter −  – 0.030  < 0.0001  < 0.0001
NR −/Filter +  0.030 –  < 0.0001  < 0.0001
NR +/Filter −   < 0.0001  < 0.0001 –  < 0.0001
NR +/Filter +   < 0.0001  < 0.0001  < 0.0001 –

Vertebrae NR −/Filter −  – 0.028  < 0.0001  < 0.0001
NR −/Filter +  0.028 –  < 0.0001  < 0.0001
NR +/Filter −   < 0.0001  < 0.0001 –  < 0.0001
NR +/Filter +   < 0.0001  < 0.0001  < 0.0001 –

Image noise NR −/Filter −  –  < 0.0001  < 0.0001  < 0.0001
NR −/Filter +   < 0.0001 – 0.024  < 0.0001
NR +/Filter −   < 0.0001 0.024 – 0.482
NR +/Filter +   < 0.0001  < 0.0001 0.482 –
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suggests that the noise reduction alone may achieve 
optimal noise suppression. Further post-processing with 
edge enhancement does not contribute additional benefits 
from a noise perspective. This finding underscores the 
effectiveness of the AI-based noise reduction technique 
as a standalone denoising method [3].

However, our results also demonstrate that adding 
edge enhancement after noise reduction processing sig-
nificantly improves the visualization of critical anatomical 
structures, including small peripheral airways, proximal 
bronchi, and vertebrae (all p < 0.0001). These improve-
ments likely result from enhanced edge definition and 
local contrast, particularly valuable in neonatal imaging 
where subtle anatomical details are crucial [4]. Therefore, 
while edge enhancement does not further reduce noise, it 
provides diagnostic value by improving structural clarity. 
The significant overall differences among the four image 
processing methods, confirmed by the Friedman test, 
further underscore the substantial impact of processing 
choices on perceived image quality. Both AI-based noise 
reduction and edge enhancement contributed meaningfully 
to these improvements, with their combined application 
achieving the best results.

Once such effective denoising is achieved, further dose 
reduction may be considered. However, excessive reduction 
in radiation dose may compromise the diagnostic image 
quality required for accurate interpretation. As Kalra et al. 
emphasized, dose optimization should always follow the 
ALARA (As Low As Reasonably Achievable) principle, 
which requires minimizing exposure while ensuring that 
diagnostic quality is not lost [6]. The ICRP further empha-
sizes the importance of Diagnostic Reference Levels (DRLs) 
in medical imaging as practical tools to guide such opti-
mization efforts [7]. Nevertheless, as Gislason-Lee noted, 
NICU-specific DRLs are still lacking, and variability in 
ALARA implementation across institutions can result in 
underexposure and inconsistent image quality [8]. Therefore, 
careful and evidence-based adjustment of imaging protocols 
is essential to maintain a proper balance between radiation 
safety and diagnostic efficacy.

These findings suggest that edge enhancement may 
enhance structural clarity without adversely affecting noise 
levels after effective denoising.

Exploratory analyses further indicated that patient 
age had minimal influence on image quality, with only 
a weak trend toward higher scores in older children for 
NR −/Filter +. By contrast, body weight showed a moderate 
positive correlation with image quality scores (ρ = 0.37, 
p < 0.001). This relationship likely reflects the greater 
image noise observed in smaller patients, particularly 
neonates undergoing low-dose imaging. These smaller 
patients appeared to benefit the most from AI-based noise 
reduction, which effectively compensated for their higher 

baseline noise levels. In larger patients, image quality tended 
to be more stable due to improved signal-to-noise ratio and 
exposure stability, which may explain the overall positive 
correlation between body weight and image quality. Given 
the skewed distribution toward NICU cases, however, the 
clinical relevance of the observed age-related trend is likely 
limited.

These results highlight the importance of tailoring image 
processing strategies to clinical needs: INR is highly effec-
tive in reducing noise, and edge enhancement adds comple-
mentary value by improving visualization of fine anatomical 
details. Together, these techniques contribute to better diag-
nostic confidence in neonatal chest radiography performed 
under low-dose conditions.

These processing options are readily available in routine 
practice, as noise reduction is applied before PACS upload, 
and edge enhancement can be accessed on all PACS termi-
nals, including NICU workstations.

Limitations

This study has several limitations. First, the sample size 
was relatively small, which may have limited the statistical 
power of comparing processing methods. Second, the evalu-
ation focused on visual image quality rather than diagnos-
tic performance. Specific pathological conditions were not 
assessed, and the effect of image processing on diagnostic 
accuracy in clinical settings remains uncertain. Future stud-
ies should investigate the diagnostic utility of these process-
ing techniques in specific disease contexts to establish their 
clinical relevance.

Conclusion

Integrating AI-based noise reduction with edge enhance-
ment improves pediatric portable X-ray image quality by 
effectively reducing noise and enhancing structural visibility. 
While noise reduction alone suppresses image noise, edge 
enhancement contributes additional diagnostic value, par-
ticularly in visualizing fine anatomical details. This com-
bined approach is therefore especially valuable in clinical 
pediatric settings where diagnostic precision is essential.
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